Test Bed and Setup

As per our processor testing policy, we take a premium category motherboard suitable for the socket, and equip the system with a suitable amount of memory running at the manufacturer's maximum supported frequency. This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer. Where possible, we will extend out testing to include faster memory modules either at the same time as the review or a later date.

Test Setup
Intel Core 10th Gen Intel Core i9-10900K
Intel Core i7-10700K
Intel Core i5-10600K
Motherboard ASRock Z490 PG Velocita (P1.30a)
CPU Cooler TRUE Copper (2kg)
DRAM Corsair Vengeance RGB 4x8GB DDR4-2933
Corsair Vengeance RGB 4x8GB DDR4-2666
GPU Sapphire RX 460 2GB (CPU Tests)
MSI GTX 1080 Gaming 8G (Gaming Tests)
PSU Corsair AX860i
SSD Crucial MX500 2TB
OS Windows 10 1909

 

Please note we are still using our 2019 gaming test suite for CPU reviews with a GTX 1080. We are in the process of rewriting our gaming test suite with some new tests, such as Borderlands and Gears Tactics, as well as changing the settings we test and moving up to an RTX 2080 Ti. It's going to take a while to do regression testing for our gaming suite, so please bear with us.

 

 

Many thanks to...

We must thank the following companies for kindly providing hardware for our multiple test beds. Some of this hardware is not in this test bed specifically, but is used in other testing.

Hardware Providers
Sapphire RX 460 Nitro MSI GTX 1080 Gaming X OC Crucial MX200 +
MX500 SSDs
Corsair AX860i +
AX1200i PSUs
G.Skill RipjawsV,
SniperX, FlareX
Crucial Ballistix
DDR4
Silverstone
Coolers
Silverstone
Fans

 

Scale Up vs Scale Out: Benefits of Automation

One comment we get every now and again is that automation isn’t the best way of testing – there’s a higher barrier to entry, and it limits the tests that can be done. From our perspective, despite taking a little while to program properly (and get it right), automation means we can do several things:

  1. Guarantee consistent breaks between tests for cooldown to occur, rather than variable cooldown times based on ‘if I’m looking at the screen’
  2. It allows us to simultaneously test several systems at once. I currently run five systems in my office (limited by the number of 4K monitors, and space) which means we can process more hardware at the same time
  3. We can leave tests to run overnight, very useful for a deadline
  4. With a good enough script, tests can be added very easily

Our benchmark suite collates all the results and spits out data as the tests are running to a central storage platform, which I can probe mid-run to update data as it comes through. This also acts as a mental check in case any of the data might be abnormal.

We do have one major limitation, and that rests on the side of our gaming tests. We are running multiple tests through one Steam account, some of which (like GTA) are online only. As Steam only lets one system play on an account at once, our gaming script probes Steam’s own APIs to determine if we are ‘online’ or not, and to run offline tests until the account is free to be logged in on that system. Depending on the number of games we test that absolutely require online mode, it can be a bit of a bottleneck.

Benchmark Suite Updates

As always, we do take requests. It helps us understand the workloads that everyone is running and plan accordingly.

A side note on software packages: we have had requests for tests on software such as ANSYS, or other professional grade software. The downside of testing this software is licensing and scale. Most of these companies do not particularly care about us running tests, and state it’s not part of their goals. Others, like Agisoft, are more than willing to help. If you are involved in these software packages, the best way to see us benchmark them is to reach out. We have special versions of software for some of our tests, and if we can get something that works, and relevant to the audience, then we shouldn’t have too much difficulty adding it to the suite.

Socket, Silicon, Security, Overclocking, Motherboards Core-to-Core Latency: Issues with the Core i5
Comments Locked

220 Comments

View All Comments

  • Boshum - Wednesday, May 20, 2020 - link

    Pfft. You are hilarious.
  • Spunjji - Tuesday, May 26, 2020 - link

    Maxipad, the latest in the line of Gondalf imitators.
  • Adm_SkyWalker - Wednesday, May 20, 2020 - link

    Once again I find myself debating if I should upgrade. My current i7-6950X has held up better than I thought it would. I guess it's another year or two wait for me.
  • Boshum - Wednesday, May 20, 2020 - link

    I would be good with a beast like that for 5 more years.
  • Icehawk - Saturday, May 23, 2020 - link

    I’d wait until a component like mobo dies, that’s what got me to move from a 3770 about a year ago to a 8700 - mobo died and they were pricy and old. Replaced my wife’s i5 from same gen with a 3900X though recently and gave her the intel box. I’m a gamer but I do a lot of encoding so felt AMD offered a better mix and allows me to use my 450W fanless PSU. But aside from encoding speed I barely notice a difference from that 3700.
  • Dug - Wednesday, May 20, 2020 - link

    The problem with all these charts is that they are inconsistent.

    There are so many variables that aren't shown that it doesn't make sense to show these.

    Most of this has to do with how motherboards handle the cpu's and what their default settings do.
    There can be a 15% swing in AMD motherboard default settings between brands. Not to mention things like pbo on or off, infinity fabric, memory timings, etc.

    I don't know about the Intel side. I remember their settings made less difference unless it was just cpu clock speed.
  • shady28 - Wednesday, May 20, 2020 - link

    Agree with the sentiment, but you kinda stacked the deck with that last statement.

    Most of the Z490s are now supporting much higher speed RAM (up to DDR4-5000) and even intel 9th gen were good at overclocked RAM, while AMD systems rarely get above 3600Mhz. It shows if you look at something like PCMark 10 where the top 100 systems on almost all of the charts is completely dominated by intel. All of them are overclocked of course, but all of the top AMD systems are also overclocked.

    What I would like to see is something along the lines of a i5-10600K vs AMD 3600 vs AMD 3600X, but not using 'all the same components other than mobo and CPU'. Take those 3 chips and build the fastest system you can with them. Use that PCI 4.0 NVMe and GPU on AMD, use that 4800Mhz CAS 18 RAM on the Intel. See what happens.
  • mrvco - Wednesday, May 20, 2020 - link

    Ok, part of me would be curious to see what Intel could (or couldn't) do with an 11th Gen spin of their 14nm process.
  • Findecanor - Wednesday, May 20, 2020 - link

    The "Security" portion of this article is not really comprehensible. I can't guess what the author is thinking. The author needs to write it down in actual words what these things mean.

    Security on Intel processors is what is holding me off from buying any Intel CPU for the time being.
    I consider myself pretty knowledgeable about the actual vulnerabilities themselves, and how they work, and how they can be mitigated -- in theory --, but if I have not kept up with every little tidbit of news about security on Intel's processors in particular, that portion of the article tells me absolutely NOTHING.
  • quadibloc - Wednesday, May 20, 2020 - link

    These chips are impressive, and for people with a need to build a system today, and a preference for Intel, they are reasonably competitive. So I am favorably impressed, even if AMD would remain my own choice at the moment. I still do believe that in the long run, Intel does have the means to regain leadership, so that in a year or two or five, AMD will be back to being in second place (but in second place like the previous generations of Ryzens, not like the Bulldozer years). I don't know, though, if even Intel will be able to keep up at the process end; even it may have to go fabless after 10nm, which would have significant implications for the industry.

Log in

Don't have an account? Sign up now